作者:JacobZhao 来源:mirror,zhaotaobo.eth

在 AI 的全价值链中,模型训练是资源消耗最大、技术门槛最高的环节,直接决定了模型的能力上限与实际应用效果。相比推理阶段的轻量级调用,训练过程需要持续的大规模算力投入、复杂的数据处理流程和高强度的优化算法支持,是 AI 系统构建的真正“重工业”。 从架构范式来看,训练方式可划分为四类:集中化训练、分布式训练、联邦学习以及本文重点讨论的去中心化训练。

集中化训练是最常见的传统方式,由单一机构在本地高性能集群内完成全部训练流程,从硬件(如 NVIDIA GPU)、底层软件(CUDA、cuDNN)、集群调度系统(如 Kubernetes),到训练框架(如基于 NCCL 后端的 PyTorch)所有组件都由统一的控制系统协调运行。这种深度协同的体系结构使得内存共享、梯度同步和容错机制的效率达到最佳,非常适合 GPT、Gemini 等大规模模型的训练,具有效率高、资源可控的优势,但同时存在数据垄断、资源壁垒、能源消耗和单点风险等问题。

分布式训练(Distributed Training)

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。